Cheap, Highly Efficient New EV Motor Uses No Magnets

"An EV motor has been developed that uses no magnets, thus lessening the United States’ reliance on Chinese magnets (which make up 97% of the world’s supply)," writes Slashdot reader nickwinlund77, adding: "I wonder what the motor’s performance is like on high grade roads?" New Atlas reports: German company Mahle has just announced a new electric motor that sounds like it solves a lot of problems in a very tidy manner. The new Mahle design uses no magnets, instead using powered coils in its rotor. Unlike previous efforts, it transfers power to the spinning rotor using contactless induction — so there are basically no wear surfaces. This should make it extremely durable — not that electric motors have a reputation for needing much maintenance. The lack of expensive metals should make it cheaper to manufacture than typical permanent-magnet motors. Mahle says the ability to tune and change the parameters of the rotor’s magnetism instead of being stuck with what a permanent magnet offers has allowed its engineers to achieve efficiencies above 95 percent right through the range of operating speeds — "a level that has only been achieved by Formula E racing cars." It’s also particularly efficient at high speeds, so it could help squeeze a few extra miles out of a battery in normal use. The company says it’ll scale nicely from sizes relevant to compact cars up to commercial vehicles.
"Our magnet-free motor can certainly be described as a breakthrough, because it provides several advantages that have not yet been combined in a product of this type," says Dr. Martin Berger, Mahle’s VP of Corporate Research and Advanced Engineering. "As a result, we can offer our customers a product with outstanding efficiency at a comparatively low cost." Mass production is about two and a half years away, according to IEEE Spectrum, and Mahle has not yet nominated which auto manufacturers it’s dealing with, but test samples are already starting to circulate.


Read more of this story at Slashdot.

Slashdot